Report by Rikesh Patel on 2225 BBC Articles from 2005-2006

Questions:

1. For each of the five categories: what are the most common topics among articles?
Tech: service, games, computers, phones, world, websites, networks, work, mobile, software,
device, digital, videos, internet, information, research, home, Microsoft, operating system, hard
drives, credit cards, consumer electronics, Las Vegas...
Business: economy, growth, government, world, investment, Euro, Dollar, jobs, oil, China,
interest rate, stock market, SEC...
Sports: games, England, championships, victories, France, goal, international, Ireland, Six
Nations Rugby, World Cup...
Politics: government, Prime ministers, Labour and Tory parties, secretary, tax, laws, campaigns,
policies, Leader Michael Howard, Chancellor Gordon Brown...
Entertainment: awards, shows and movies, stars, music, actors, directors, singers, Oscars,
festivals, Hollywood, Los Angeles, New York..

2. Across all categories: how many articles talk about each of the G20 countries?
Surprisingly, there are more articles that mention “US” than that for “UK.” According to my
count, there are 1700 articles that mention at least one G20 country, and each of the countries
are mentioned in at least one article.

3. Describe the methodologies you used in your report.
To answer the question of what is the most mentioned G20 country, | thought the simplest route
of retrieving the common topics of the articles was to get the topics directly from the articles’
words. So | used Counter to count the most common word sequences per article category after
cleaning the text and then plotted these phrase frequencies. After thinking how this may be
flawed because it risks skewing the common phrases towards articles that are repetitive, | then
added an interim step to make every word unique per article, so there are no repeats. This new
step solves the issue, so | will note and accept the drawback of some two-letter phrases not
being counted in some rare circumstances. There is likely another route to count uniquely
without taking this loss, so given more time, | would look into that. For a count of repeated word
usage, | counted the number of times specific words were found in the text, and for every
individual article with a match, | would tally it. | plotted these counts for a polished final result.

4. What tools did you use for this analysis?
| used Python on Google Colab to test code quickly and look at the data available, and then |
used Visual Studio Code to run the Python code locally and create a PDF report.

5. If you had more time how would you strengthen your report?
If  had more time, | would integrate the geopolitical entity detection and geocoding | set up for
fun with the simple country name counter to create a more accurate list of most mentioned
countries out of all countries globally using the Google Maps API. | would also apply more topic
models to check if they may have greater coherence. | would also like to stress test the script’s
speed by adding more news articles and articles in different topics to the dataset.


https://colab.research.google.com/drive/1mstnEX0TCWSWvQMYtiLhE6OnkdTS8HtJ?usp=sharing
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The t-SNE projections were very insightful upon first looking at the dataset. It
shows us how similar each topic grouping is by taking the similarity of the words
used in each article. The disparate usage of words by article topic demonstrates
that each topic has some functional classification. There is also sense in how
some articles are outliers in an area of a different article topic because overlap 1s
natural.
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The t-SNE projections were very insightful upon first looking at the dataset. It shows us how similar each topic grouping is by taking the similarity of the words used in each article. The disparate usage of words by article topic demonstrates that each topic has some functional classification. There is also sense in how some articles are outliers in an area of a different article topic because overlap is natural.


2 Word Cloud by Each Article Topic
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3 Phrase Cloud for Each Article Topic
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The first page of word clouds represents a diagram of the most used words by
topic, such that more highly used words are larger. At this time, I can see the
biggest UK. players in tech are Apple, Microsoft, and Sony. It is also insightful
that government 1s a common word in both business and politics.

Likewise, the second page of word clouds represents a diagram of the most used
phrases by topic. In the sports topic, you can see the most popular teams and
cups being mentioned while the entertainment topic section highlights the most
mentioned media of the year.

Each topic’s specific distribution of words reaffirms the disparate nature of the t-
SNE distribution we found based on text similarity. By applying these common
key words, creating a machine learning algorithm to evaluate a sample text’s
topic would be more robust.

The large white space in the topic of tech also goes to show the uniqueness of
the average word while politics and business looks like a wall of large text
because it 1s more likely to be repetitive. While tech articles are more innovative
and progressive, one could see politics articles having a greater tendency of
discussing the same subjects, such as Prime Minister Tony Blair and the
government election.

In a future project, it would be simple to expand on this word cloud graph and
colorize each word based on the level of positivity or negativity of the context it
is used to gather insight into the term’s connotation. For instance, 1s the average
sentiment when Tony Blair’s name is mentioned more positive or negative?
Overall, word clouds are compelling because they provide a bird’s eye view of
the text by removing the details, which can often blur a text’s true meaning.
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The first page of word clouds represents a diagram of the most used words by topic, such that more highly used words are larger. At this time, I can see the biggest U.K. players in tech are Apple, Microsoft, and Sony. It is also insightful that government is a common word in both business and politics.
Likewise, the second page of word clouds represents a diagram of the most used phrases by topic. In the sports topic, you can see the most popular teams and cups being mentioned while the entertainment topic section highlights the most mentioned media of the year.
Each topic’s specific distribution of words reaffirms the disparate nature of the t-SNE distribution we found based on text similarity. By applying these common key words, creating a machine learning algorithm to evaluate a sample text’s topic would be more robust. 
The large white space in the topic of tech also goes to show the uniqueness of the average word while politics and business looks like a wall of large text because it is more likely to be repetitive. While tech articles are more innovative and progressive, one could see politics articles having a greater tendency of discussing the same subjects, such as Prime Minister Tony Blair and the government election.
In a future project, it would be simple to expand on this word cloud graph and colorize each word based on the level of positivity or negativity of the context it is used to gather insight into the term’s connotation. For instance, is the average sentiment when Tony Blair’s name is mentioned more positive or negative?
Overall, word clouds are compelling because they provide a bird’s eye view of the text by removing the details, which can often blur a text’s true meaning.
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Polarity by Topic
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Each article’s words were analyzed for their polarity and subjectivity, or in other
words, their positivity and bias. In this case, most BBC articles are more positive
than negative and are moderately opinionated. In the last graph, one can see
that sports and entertainment articles tend to be more positive on average.
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Each article’s words were analyzed for their polarity and subjectivity, or in other words, their positivity and bias. In this case, most BBC articles are more positive than negative and are moderately opinionated. In the last graph, one can see that sports and entertainment articles tend to be more positive on average.


5 Most Mentioned G20 Countries
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For the most mentioned G20 countries, the United Kingdom and the United
States are at the top as expected. Below this table, you can see a sample of the
table that was created to make the graph above in getting matches for each

country’s tallies.
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6 Treemap Distribution of Most Mentioned G20 Countries by
Topic
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The treemap is a robust tool for visualization when used correctly. Here, the size
of any box corresponds to the times mentioned while the color corresponds to

the average polarity (1st graph) and average subjectivity (2nd graph) of those
articles. For instance, entertainment articles that mention England are more

positive (as shown in the first graph), and overall, articles that mention England
are more biased (as shown in the second graph).
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The treemap is a robust tool for visualization when used correctly. Here, the size of any box corresponds to the times mentioned while the color corresponds to the average polarity (1st graph) and average subjectivity (2nd graph) of those articles. For instance, entertainment articles that mention England are more positive (as shown in the first graph), and overall, articles that mention England are more biased (as shown in the second graph).


7 Topic Modeling (through LDA Model)
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Overall term frequency
I Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = A * p(w | t) + (1 - A) * p(w | t)/p(w); see Sievert & Shirley (2014)

The next graphs outline the results of an LDA model on the dataset. In the
instance of separating out 5 topics, the LDA model assigns a topic group to each
article through machine learning until all articles are assigned. In this
visualization, you can see the most used words in each artificial topic. The model
coherence score is important to maximize, so the topics created in assignment
have meaning, so it is equally important to choose the correct number of topics
for the LDA model to create to be meaningtful.
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The next graphs outline the results of an LDA model on the dataset. In the instance of separating out 5 topics, the LDA model assigns a topic group to each article through machine learning until all articles are assigned. In this visualization, you can see the most used words in each artificial topic. The model coherence score is important to maximize, so the topics created in assignment have meaning, so it is equally important to choose the correct number of topics for the LDA model to create to be meaningful.
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[movie, body, peer_peer, net, movie, industry,...
[online, game, politic, time, online, game, po...
[digital, tv, lifestyle, people, digital, ente...
[consumer, snub, portable, video, consumer, mu...

[net_cafe, culture, crackdown, chinese, author...

Text

[house_price, average, recent, evidence, housi...

[greek_sprinter, greek, athletic, body, week, ...

[poll, good, result, local, council, poll, fro...

[mail, firm, virus, electronic, card, virus, s...

[soul, memory, legend, music, world, music, ce...
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